organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Ethoxyimino-*N*′-methoxypyrrolidin-1ium-3-carboximidamidium dichloride

Qiang Guo, Lanying Sun, Huiyuan Guo and Mingliang Liu*

Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100050, People's Republic of China Correspondence e-mail: Imllyx@yahoo.com.cn

Received 11 January 2009; accepted 10 February 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; disorder in main residue; R factor = 0.077; wR factor = 0.210; data-to-parameter ratio = 15.3.

The title compound, $C_8H_{18}N_4O_2^{2+}\cdot 2Cl^-$, contains two oxime groups. The methyl oxime group has a Z configuration, and the ethyl oxime group is disordered, with both Z and E configurations in occupancies of 0.840 (8) and 0.160 (8), respectively. In the crystal structure, there are a number of $N-H\cdots$ Cl hydrogen bonds.

Related literature

For properties of quinolone derivatives, see: Ball *et al.* (1998); Ray *et al.* (2005). For the synthesis of new quinolones, see: Anderson & Osheroff (2001); Choi *et al.* (2004); Wang, Guo *et al.* (2008). For some crystal structures of quinolones, see: Wang, Liu *et al.* (2008).

Experimental

Crystal data $C_8H_{18}N_4O_2^{2+}\cdot 2Cl^{-1}$

 $M_r = 273.16$

Orthorhombic, *Pbcn* a = 12.7355 (14) Å b = 8.8506 (12) Å c = 26.334 (2) Å V = 2968.3 (6) Å³

Data collection

Bruker SMART CCD area-detector	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Sheldrick, 1996)	
$T_{\min} = 0.907, T_{\max} = 0.922$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.077$ 170 parameters $wR(F^2) = 0.210$ H-atom parameters constrainedS = 1.08 $\Delta \rho_{max} = 0.44$ e Å⁻³2597 reflections $\Delta \rho_{min} = -0.33$ e Å⁻³

Z = 8

Mo $K\alpha$ radiation

 $0.23 \times 0.20 \times 0.19 \text{ mm}$

14370 measured reflections 2597 independent reflections

1986 reflections with $I > 2\sigma(I)$

 $\mu = 0.43 \text{ mm}^{-1}$

T = 298 K

 $R_{\rm int}=0.062$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3-H3B\cdots$ Cl1	0.86	2.29	3.144 (4)	173
$N3-H3A\cdots Cl1^{i}$	0.86	2.41	3.213 (4)	156
$N2-H2\cdots Cl2^{ii}$	0.86	2.21	3.029 (4)	160
$N1 - H1B \cdot \cdot \cdot Cl2$	0.90	2.18	3.035 (4)	159
$N1 - H1A \cdots Cl1^{iii}$	0.90	2.20	3.076 (4)	165

Symmetry codes: (i) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, z; (ii) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, z; (iii) -x + 1, -y, -z + 1.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT* and *SHELXTL* (Sheldrick, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by the IMB Research Foundation.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2146).

References

Anderson, V. E. & Osheroff, N. (2001). Curr. Pharm. Des. 7, 337-353.

Ball, P., Tilloston, G. & Fernald, A. (1998). Expert Opin. Investig. Drugs, 7, 761–783.

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Choi, D. R., Shin, J. H. & Yang, J. (2004). Bioorg. Med. Chem. Lett. 14, 1273– 1277.

Ray, S., Pathak, S. R. & Chaturvedi, D. (2005). Drugs Future, 30, 161–180. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wang, X. Y., Guo, Q. & Wang, Y. C. (2008). Acta Pharmacol. Sin. **43**, 819–827.

Wang, J., Liu, M., Cao, J. & Wang, Y. (2008). Acta Cryst. E64, o2294.

Acta Cryst. (2009). E65, o580 [doi:10.1107/S1600536809004772]

4-Ethoxyimino-N'-methoxypyrrolidin-1-ium-3-carboximidamidium dichloride

Q. Guo, L. Sun, H. Guo and M. Liu

Comment

Since the discovery of norfloxacin, fluoroquinolone antibacterial agents have emerged as one of the dominant classes of chemotherapeutic drugs for the treatment of various bacterial infections (Ball *et al.*, 1998; Ray *et al.*, 2005). The most intensive structural variations have been carried out on the basic group at the C-7 position. In general, 5- and 6-membered nitrogen heterocycles including piperazinyl, pyrrolidinyl and piperidinyl type side chains have been proven to be the optimal substituents, as evidenced by the compounds currently on the market (Anderson & Osheroff, 2001; Choi *et al.*, 2004). Recently, as part of an ongoing program to find potent new fluoroquinolones displaying strong Gram-positive activity, we have focused our attention on introducing new functional groups to the pyrrolidine ring. We report here the crystal structure of the title compound, which is intended for use as a novel substituent at the C-7 position of fluoroquinolones.

There are two oximes in the molecule of the title compound (Fig. 1). The methyloxime has the *Z* configuration, and the ethyloxime is disordered, with both *Z* and E configurations at occupancy factors of 0.840 (8) and 0.160 (8), respectively. In the molecule the N3—C5(1.296 (6) Å) bond length is significantly shorter than the normal C—N single bond (1.47 Å), indicating some delocalization over the N3-C5-N2 group. The five-membered pyrrolidine ring adopts an envelope conformation. In the crystal structure, there are a number of N–H…Cl hydrogen bonds. (Table 1)

Experimental

To a stirring solution of *N*-methoxy-(1-*N*-tert-butoxycarbonyl-4- ethoxyimino) pyrrolidine-3-carboximidamide (15.0 g, 50.0 mmol) in methanol (80 ml) was pumped into dry hydrogen chloride for 2 h at room temperature. After the removal of the methanol under reduced pressure, the residue was treated with ethyl acetate (80 ml), and filtered. The filter cake was washed with ethyl acetate and ether, respectively, dried *in vacuo* to give the title compound as a white solid (11.5 g, 84.2%; mp: 375–376 K). Single crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol/ ethyl acetate (1:1 v/v). ¹H NMR(DMSO-d₆, δ):1.14–1.17(3*H*, m, CH₃), 3.44–3.58(m, 1*H*, pyrrolidine), 3.53(2*H*, br, NH₂⁺), 3.66(3*H*, s, OCH₃), 3.68–3.79(2*H*, m, OCH₂), 4.03–4.11(4*H*, m, pyrrolidine), 9.88–9.93(3*H*, br, NH₂, NH⁺). MS(ESI, m/z): 201(*M*+H)⁺.

Refinement

All H atoms were placed at calculated positions, with C—H = 0.96–0.97 Å, N—H= 0.86–0.90 Å, and included in the final cycles of refinement using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C, N)$ or $1.5U_{eq}(C)$ for methyl H atoms.

Figures

Fig. 1. The molecular structure showing 40% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2. Crystal packing of the title compound viewed down the b axis.

4-Ethoxyimino-N'-methoxypyrrolidin-1-ium-3-carboximidamidium dichloride

Crystal data

$C_8H_{18}N_4O_2^{2+}2Cl^-$	$F_{000} = 1152$
$M_r = 273.16$	$D_{\rm x} = 1.223 {\rm ~Mg~m}^{-3}$
Orthorhombic, Pbcn	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P2n 2ab	Cell parameters from 3944 reflections
<i>a</i> = 12.7355 (14) Å	$\theta = 2.2 - 24.1^{\circ}$
b = 8.8506 (12) Å	$\mu = 0.43 \text{ mm}^{-1}$
c = 26.334 (2) Å	T = 298 K
V = 2968.3 (6) Å ³	Block, colorless
<i>Z</i> = 8	$0.23\times0.20\times0.19~mm$

Data collection

Bruker SMART CCD area-detector diffractometer	2597 independent reflections
Radiation source: fine-focus sealed tube	1986 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.062$
T = 298 K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.6^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -15 \rightarrow 14$
$T_{\min} = 0.907, \ T_{\max} = 0.922$	$k = -10 \rightarrow 10$
14370 measured reflections	$l = -29 \rightarrow 31$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.077$	H-atom parameters constrained
$wR(F^2) = 0.210$	$w = 1/[\sigma^2(F_o^2) + (0.0819P)^2 + 7.7771P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\text{max}} = 0.001$
2597 reflections	$\Delta \rho_{max} = 0.44 \text{ e} \text{ Å}^{-3}$
170 parameters	$\Delta \rho_{min} = -0.33 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Special details

methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Cl1	0.67028 (9)	0.08761 (14)	0.52171 (5)	0.0516 (4)	
Cl2	0.18814 (10)	0.22720 (17)	0.63480 (6)	0.0636 (5)	
N1	0.3711 (3)	0.1103 (5)	0.57222 (17)	0.0528 (11)	
H1A	0.3640	0.0382	0.5484	0.063*	
H1B	0.3090	0.1220	0.5881	0.063*	
N2	0.5131 (3)	0.5960 (4)	0.59228 (17)	0.0543 (11)	
H2	0.4590	0.6173	0.6105	0.065*	
N3	0.6142 (3)	0.4217 (5)	0.55190 (18)	0.0573 (12)	
H3A	0.6593	0.4897	0.5437	0.069*	
H3B	0.6239	0.3293	0.5429	0.069*	
N4	0.559 (2)	0.2442 (19)	0.6611 (11)	0.065 (4)	0.840 (8)
N4'	0.570 (12)	0.212 (14)	0.657 (6)	0.065 (4)	0.160 (8)
01	0.5835 (3)	0.7083 (4)	0.57752 (15)	0.0579 (10)	
O2	0.5905 (4)	0.1079 (6)	0.6834 (2)	0.0762 (17)	0.840 (8)
O2'	0.581 (2)	0.352 (3)	0.6806 (10)	0.071 (8)	0.160 (8)
C1	0.4045 (4)	0.2533 (6)	0.5489 (2)	0.0503 (12)	
H1C	0.3451	0.3066	0.5343	0.060*	
H1D	0.4564	0.2359	0.5226	0.060*	

C2	0.4513 (4)	0.3417 (5)	0.59299 (19)	0.0446 (11)	
H2A	0.3944	0.3920	0.6115	0.053*	
C3	0.4953 (4)	0.2171 (5)	0.62580 (18)	0.0454 (11)	
C4	0.4533 (4)	0.0679 (6)	0.6089 (2)	0.0545 (13)	
H4A	0.5075	0.0076	0.5929	0.065*	
H4B	0.4240	0.0119	0.6372	0.065*	
C5	0.5316 (4)	0.4584 (5)	0.57781 (19)	0.0443 (11)	
C6	0.6473 (6)	0.7496 (7)	0.6196 (3)	0.0761 (18)	
H6A	0.6036	0.7852	0.6468	0.091*	
H6B	0.6949	0.8283	0.6096	0.091*	
H6C	0.6866	0.6633	0.6309	0.091*	
C7	0.6511 (8)	0.1432 (11)	0.7286 (3)	0.089 (3)	0.840 (8)
H7A	0.6104	0.2054	0.7517	0.106*	0.840 (8)
H7B	0.7149	0.1970	0.7197	0.106*	0.840 (8)
C8	0.6770 (12)	-0.0062 (15)	0.7528 (5)	0.142 (5)	0.840 (8)
H8A	0.6131	-0.0580	0.7613	0.171*	0.840 (8)
H8B	0.7174	0.0105	0.7830	0.171*	0.840 (8)
H8C	0.7169	-0.0665	0.7294	0.171*	0.840 (8)
C7'	0.648 (4)	0.337 (6)	0.7247 (18)	0.089 (3)	0.160 (8)
H7'1	0.6934	0.2488	0.7214	0.106*	0.160 (8)
H7'2	0.6072	0.3274	0.7555	0.106*	0.160 (8)
C8'	0.713 (6)	0.482 (7)	0.725 (2)	0.12 (2)	0.160 (8)
H8'1	0.7592	0.4822	0.7541	0.148*	0.160 (8)
H8'2	0.6673	0.5680	0.7270	0.148*	0.160 (8)
H8'3	0.7545	0.4884	0.6947	0.148*	0.160 (8)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0413 (7)	0.0468 (7)	0.0667 (8)	0.0032 (5)	-0.0018 (6)	-0.0150 (6)
Cl2	0.0396 (7)	0.0652 (9)	0.0862 (10)	-0.0009 (6)	0.0023 (6)	-0.0207 (8)
N1	0.040 (2)	0.053 (3)	0.065 (3)	-0.010 (2)	0.003 (2)	-0.020 (2)
N2	0.049 (2)	0.039 (2)	0.074 (3)	-0.002 (2)	0.011 (2)	-0.006 (2)
N3	0.044 (2)	0.038 (2)	0.090 (3)	-0.0026 (19)	0.018 (2)	-0.007 (2)
N4	0.067 (7)	0.060 (11)	0.068 (6)	-0.008 (7)	-0.015 (5)	0.001 (8)
N4'	0.067 (7)	0.060 (11)	0.068 (6)	-0.008 (7)	-0.015 (5)	0.001 (8)
01	0.058 (2)	0.0403 (19)	0.076 (3)	-0.0096 (17)	0.011 (2)	0.0023 (18)
O2	0.086 (4)	0.065 (3)	0.077 (3)	-0.009 (3)	-0.027 (3)	0.008 (3)
O2'	0.078 (18)	0.065 (18)	0.072 (17)	-0.006 (14)	-0.016 (14)	-0.016 (15)
C1	0.035 (2)	0.059 (3)	0.057 (3)	0.002 (2)	-0.005 (2)	-0.004 (2)
C2	0.036 (2)	0.040 (3)	0.058 (3)	-0.001 (2)	0.005 (2)	-0.002 (2)
C3	0.040 (3)	0.049 (3)	0.047 (3)	-0.009 (2)	-0.004 (2)	0.000(2)
C4	0.049 (3)	0.046 (3)	0.068 (3)	-0.004 (2)	0.000 (3)	-0.002 (3)
C5	0.036 (2)	0.041 (3)	0.056 (3)	0.004 (2)	-0.001 (2)	-0.004 (2)
C6	0.070 (4)	0.065 (4)	0.093 (5)	-0.016 (3)	0.007 (4)	-0.014 (3)
C7	0.094 (6)	0.090 (6)	0.082 (5)	0.004 (5)	-0.034 (5)	0.001 (5)
C8	0.177 (14)	0.139 (10)	0.110 (9)	0.045 (9)	-0.059 (9)	0.010 (8)
C7'	0.094 (6)	0.090 (6)	0.082 (5)	0.004 (5)	-0.034 (5)	0.001 (5)

C8'	0.14 (5)).13 (5)	0.10 (4)	0.01 (4)	-0.02 (4)	-0.03 (4)
Geometric param	neters (Å, °)					
N1—C1		1.470 (7)		C2—C3		1.509 (7)
N1—C4		1.473 (7)		C2—H2A		0.9800
N1—H1A		0.9000		C3—C4		1.493 (7)
N1—H1B		0.9000		C4—H4A		0.9700
N2—C5		1.297 (6)		C4—H4B		0.9700
N2—O1		1.393 (5)		С6—Н6А		0.9600
N2—H2		0.8600		С6—Н6В		0.9600
N3—C5		1.296 (6)		С6—Н6С		0.9600
N3—H3A		0.8600		С7—С8		1.504 (14)
N3—H3B		0.8600		C7—H7A		0.9700
N4—C3		1.26 (3)		С7—Н7В		0.9700
N4—O2		1.40 (2)		C8—H8A		0.9600
N4'—C3		1.26 (16)		C8—H8B		0.9600
N4'—O2'		1.39 (12)		C8—H8C		0.9600
O1—C6		1.423 (8)		C7'—C8'		1.53 (8)
O2—C7		1.454 (9)		С7'—Н7'1		0.9700
O2'—C7'		1.45 (5)		С7'—Н7'2		0.9700
C1—C2		1.521 (7)		C8'—H8'1		0.9600
C1—H1C		0.9700		C8'—H8'2		0.9600
C1—H1D		0.9700		C8'—H8'3		0.9600
С2—С5		1.507 (7)				
C1—N1—C4		106.7 (4)		N1—C4—H4B		111.2
C1—N1—H1A		110.4		C3—C4—H4B		111.2
C4—N1—H1A		110.4		H4A—C4—H4B		109.1
C1—N1—H1B		110.4		N3—C5—N2		122.5 (5)
C4—N1—H1B		110.4		N3—C5—C2		121.2 (4)
H1A—N1—H1B		108.6		N2—C5—C2		116.3 (4)
C5—N2—O1		118.1 (4)		O1—C6—H6A		109.5
C5—N2—H2		120.9		O1—C6—H6B		109.5
O1—N2—H2		120.9		Н6А—С6—Н6В		109.5
C5—N3—H3A		120.0		O1—C6—H6C		109.5
C5—N3—H3B		120.0		H6A—C6—H6C		109.5
H3A—N3—H3B		120.0		H6B—C6—H6C		109.5
C3—N4—O2		109.2 (14)		O2—C7—C8		105.9 (8)
C3—N4'—O2'		109 (9)		O2—C7—H7A		110.6
N2-O1-C6		109.5 (4)		С8—С7—Н7А		110.6
N4—O2—C7		108.0 (11)		O2—C7—H7B		110.6
N4'—O2'—C7'		109 (7)		С8—С7—Н7В		110.6
N1-C1-C2		103.8 (4)		H7A—C7—H7B		108.7
N1—C1—H1C		111.0		С7—С8—Н8А		109.5
C2—C1—H1C		111.0		С7—С8—Н8В		109.5
N1—C1—H1D		111.0		H8A—C8—H8B		109.5
C2—C1—H1D		111.0		С7—С8—Н8С		109.5
H1C-C1-H1D		109.0		H8A—C8—H8C		109.5
C5—C2—C3		113.7 (4)		H8B—C8—H8C		109.5

C5—C2—C1	114.6 (4)	O2'—C7'—C8'	104 (4)
C3—C2—C1	101.9 (4)	O2'—C7'—H7'1	110.9
С5—С2—Н2А	108.8	C8'—C7'—H7'1	110.9
C3—C2—H2A	108.8	O2'—C7'—H7'2	110.9
C1—C2—H2A	108.8	C8'—C7'—H7'2	110.9
N4—C3—C4	128.4 (10)	H7'1—C7'—H7'2	108.9
N4'—C3—C4	116 (6)	С7'—С8'—Н8'1	109.5
N4—C3—C2	121.6 (10)	С7'—С8'—Н8'2	109.5
N4'—C3—C2	133 (7)	H8'1—C8'—H8'2	109.5
C4—C3—C2	110.0 (4)	C7'—C8'—H8'3	109.5
N1—C4—C3	103.0 (4)	H8'1—C8'—H8'3	109.5
N1—C4—H4A	111.2	H8'2—C8'—H8'3	109.5
C3—C4—H4A	111.2		
C5—N2—O1—C6	-104.6 (6)	C5—C2—C3—C4	-137.4 (4)
C3—N4—O2—C7	-171.4 (14)	C1—C2—C3—C4	-13.5 (5)
C3—N4'—O2'—C7'	167 (9)	C1—N1—C4—C3	30.2 (5)
C4—N1—C1—C2	-39.6 (5)	N4—C3—C4—N1	171.6 (16)
N1-C1-C2-C5	154.7 (4)	N4'—C3—C4—N1	-179 (8)
N1—C1—C2—C3	31.5 (5)	C2—C3—C4—N1	-9.5 (5)
O2—N4—C3—C4	1(3)	O1—N2—C5—N3	2.4 (8)
O2—N4—C3—C2	-177.3 (9)	O1—N2—C5—C2	-177.8 (4)
O2'—N4'—C3—N4	-13 (25)	C3—C2—C5—N3	60.0 (6)
O2'—N4'—C3—C4	-163 (7)	C1—C2—C5—N3	-56.7 (6)
O2'—N4'—C3—C2	31 (17)	C3—C2—C5—N2	-119.7 (5)
C5—C2—C3—N4	41.6 (15)	C1—C2—C5—N2	123.6 (5)
C1—C2—C3—N4	165.4 (14)	N4—O2—C7—C8	176.7 (14)
C5—C2—C3—N4'	29 (9)	N4'—O2'—C7'—C8'	143 (8)
C1—C2—C3—N4'	153 (9)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N3—H3B…Cl1	0.86	2.29	3.144 (4)	173
N3—H3A…Cl1 ⁱ	0.86	2.41	3.213 (4)	156
N2—H2···Cl2 ⁱⁱ	0.86	2.21	3.029 (4)	160
N1—H1B···Cl2	0.90	2.18	3.035 (4)	159
N1—H1A…Cl1 ⁱⁱⁱ	0.90	2.20	3.076 (4)	165

Symmetry codes: (i) -x+3/2, y+1/2, z; (ii) -x+1/2, y+1/2, z; (iii) -x+1, -y, -z+1.

